Investigations of Substrate Channeling in the Proline Oxidative Pathway

نویسندگان

  • Nikhilesh Sanyal
  • Donald F. Becker
چکیده

In cell metabolism, substrate channeling is a phenomenon where the product of one reaction is transported to a second enzyme active site without equilibrating into bulk solvent. Chapter 1 reviews the rationale and evidence for substrate channeling with the specific example of proline metabolism. Oxidation of proline to glutamate is catalyzed in consecutive reactions by proline dehydrogenase (PRODH) and pyrroline-5-carboxylate dehydrogenase (P5CDH). The intermediate Δ 1-pyrroline-5-carboxylate reportedly tends to be labile and inhibitory towards several metabolic pathways. One of the main objectives of this dissertation was to investigate substrate channeling between independent proline oxidative enzymes from Thermus thermophilus-TtPRODH and TtP5CDH. Chapter 2 establishes that TtPRODH and TtP5CDH are capable of interacting with a dissociation constant (K D) of 3.03 µM as demonstrated using Surface Plasmon Resonance (SPR). As observed in the present study, this interaction is possible only with a specific orientation of TtPRODH relative to TtP5CDH. A docking model of the two enzymes predicts an orientation of the active sites which is supportive of substrate channeling. Corroborating observations are made with kinetic studies. We observe that interference of TtPRODH-TtP5CDH complex by catalytically inactive mutants TtPRODH R288M/R289M and TtP5CDH C322A lead to significant decrease in glutamate formation. The results pave the way for testing substrate channeling in eukaryotic enzymes. In chapter 3, two novel eukaryotic enzymes from Saccharomyces cerevisiae, Put1p (PRODH) and Put2p (P5CDH), have been characterized. Particular attention was focused on the oxidative half-reaction of Put1p for gaining insight into possible redox functions of human PRODH. Previous studies show that bifunctional enzyme from Gram-negative Bradyrhizobium japonicum (BjPutA) containing PRODH and P5CDH domains, exhibits substrate channeling via an elegant internal tunnel. BjPutA and its channeling variants were used to test the role of substrate channel in hydrolysis of P5C, an essential step in proline oxidation. These aspects of substrate channeling are discussed in chapter 4. Overall, this study provides an improved understanding of: (1) Substrate channeling in proline oxidation; and (2) a model for investigating substrate channeling between other individual enzymes that catalyze consecutive reactions. iv ACKNOWLEDGEMENTS Firstly, I would like to express sincere gratitude to my advisor, Dr. Donald F. Becker, for his invaluable guidance throughout my graduate career. His constant encouragement and thoughtful critique of experimental ideas have shaped me into a better scientist. I will always be inspired by his dedication to fostering young students towards a career in scientific research. I would also like to thank …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Substrate channeling in proline metabolism.

Proline metabolism is an important pathway that has relevance in several cellular functions such as redox balance, apoptosis, and cell survival. Results from different groups have indicated that substrate channeling of proline metabolic intermediates may be a critical mechanism. One intermediate is pyrroline-5-carboxylate (P5C), which upon hydrolysis opens to glutamic semialdehyde (GSA). Recent...

متن کامل

Structural Biology of Proline Catabolic Enzymes.

SIGNIFICANCE Proline catabolism refers to the 4-electron oxidation of proline to glutamate catalyzed by the enzymes proline dehydrogenase (PRODH) and l-glutamate γ-semialdehyde dehydrogenase (GSALDH, aka ALDH4A1). These enzymes and the intermediate metabolites of the pathway have been implicated in tumor growth and suppression, metastasis, hyperprolinemia metabolic disorders, schizophrenia susc...

متن کامل

Kinetic and Structural Characterization of Tunnel-Perturbing Mutants in Bradyrhizobium japonicum Proline Utilization A

Proline utilization A from Bradyrhizobium japonicum (BjPutA) is a bifunctional flavoenzyme that catalyzes the oxidation of proline to glutamate using fused proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains. Recent crystal structures and kinetic data suggest an intramolecular channel connects the two active sites, promoting substrate channeling of the i...

متن کامل

First evidence for substrate channeling between proline catabolic enzymes: a validation of domain fusion analysis for predicting protein-protein interactions.

Proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) catalyze the four-electron oxidation of proline to glutamate via the intermediates P5C and l-glutamate-γ-semialdehyde (GSA). In Gram-negative bacteria, PRODH and P5CDH are fused together in the bifunctional enzyme proline utilization A (PutA) whereas in other organisms PRODH and P5CDH are expressed as sep...

متن کامل

Investigation of Proline Utilization A: Kinetic Analysis of Substrate Channel-blocking Mutants and Creation of a Trifunctional Chimera Enzyme

Proline utilization A (PutA) from Bradyrhizobium japonicum (BjPutA) is a bifunctional flavoenzyme that catalyzes the oxidation of proline to glutamate using fused proline dehydrogenase (PRODH) and ∆-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains. Recent crystal structures and kinetic data suggest an intramolecular channel connects the two active sites, promoting substrate channeling of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016